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Abstract Several estimators have been proposed that use

molecular marker data to infer the degree of relatedness for

pairs of individuals. The objective of this study was to

evaluate the performance of seven estimators when applied

to marker data of a set of 33 key individuals from a large

complex apple pedigree. The evaluation considered dif-

ferent scenarios of allele frequencies and different numbers

of marker loci. The method of moments estimators were

Similarity, Queller-Goodknight, Lynch-Ritland and Wang.

The maximum likelihood estimators were Thompson,

Anderson-Weir and Jacquard. The pedigree-based coan-

cestry coefficients were taken as the point of reference in

calculating correlations and root mean square error

(RMSE). The marker data comprised 86 multi-allelic SSR

markers on 17 linkage groups, covering 11 Morgans.

Additionally, we simulated 10 datasets conditional on the

real pedigree to support the results on the real dataset.

None of the estimators outperformed the others. Knowl-

edge of allele frequencies appeared to be the most

influential, i.e., the highest correlations and lowest RMSE

were found when frequencies from the founder population

were available. When equal allele frequencies were used,

all estimators resulted in very similar, but on average

lower, correlations. The use of allele frequencies estimated

from the set of 33 individuals gave, on average, the poorest

results. The maximum likelihood estimators and the

Lynch-Ritland estimator were the most sensitive to allele

frequencies. The results from the simulation study fully

supported the trends in results of the real dataset. This

study indicated that high correlations (up to 0.90) and small

RMSE (below 0.03), may be obtained when population

allelic frequencies are available. In this scenario, the per-

formances of the various estimators were similar, but

seemed to favor the maximum likelihood estimators. In the

absence of reliable allele frequencies the method of

moments estimators were shown to be more robust. The

number of marker loci influenced the average performance

of the estimators; however, the ranking was not affected.

Correlations up to 0.80 were obtained when two markers

per chromosome and appropriate allele frequencies were

available. Adding more markers to the current dataset may

lead to marginal improvements.

Introduction

Molecular marker data have been used to infer the

degree of relatedness between two individuals in a
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variety of contexts (Weir et al. 2006). The primary

interest is often in the relatedness estimates themselves.

Alternatively, it may lie in using the estimates in a

subsequent analysis in quantitative genetics (Lynch and

Walsh 1998). Marker-based estimates have been com-

bined with phenotypic observations to obtain heritability

estimates for natural populations (Ritland 1996b; Thomas

and Hill 2000). More recently, Yu et al. (2006) incor-

porated a marker-based relationship matrix into a mixed

model approach for association mapping. The marker-

based relatedness among individuals effectively accoun-

ted for hidden levels of relatedness that otherwise

resulted in spurious associations between genetic markers

and quantitative traits (Yu et al. 2006). In addition,

including known relationships between parents of mul-

tiple mapping populations generally increases the power

to detect and map QTL in linkage analysis (Bink et al.

2002). Traditionally, relationships are calculated from a

known pedigree (Crow and Kimura 1970; Lynch and

Walsh 1998). When pedigree records are missing or

unreliable, the relationships may be obtained by marker-

based estimators.

In the estimation of pairwise relatedness in plant

breeding populations, the following two issues seem rele-

vant. First, effective population sizes are often small and

therefore, the presence of recent inbreeding needs to be

taken into account. Second, accurate estimates for popu-

lation allelic frequencies of markers are not available for

many plant species.

The quantification of relatedness can also be done

through probabilities of identity by descent (IBD). For non-

inbred individuals, these are the probability that two indi-

viduals share two alleles IBD and the probability that they

share one allele IBD. A commonly used measure of

relatedness is the coancestry coefficient (Wright 1922).

Many estimators for pairwise relatedness have been

developed for the case where the loci are unlinked and the

individuals are not inbred, for example the maximum

likelihood (ML) estimator of Thompson (1975), and a

variety of method of moments (MOM) estimators (Li et al.

1993; Lynch and Ritland 1999; Queller and Goodnight

1989; Ritland 1996a; Wang 2002). Milligan (2003) com-

pared the statistical properties of these estimators and

concluded that the ML estimator exhibits a smaller stan-

dard error but is more biased than the others are. However,

these differences became smaller when marker information

increased (Milligan 2003). All these estimators rely heavily

on accurate knowledge of the marker allelic frequencies,

although one of the MOM estimators was claimed to be

more robust to misspecification (Wang 2002). Recently,

Thompson’s ML estimator has been extended by incor-

porating a population structure parameter to examine

individuals belonging to a subpopulation that have

diverged from the original population to which known

allele frequencies are applied (Anderson and Weir 2007).

The potential of this latter approach for situations where

the allele frequencies of the original population are

unknown is yet to be explored. The ML estimator of

Thompson (1975) can be generalized to a less parsimoni-

ous estimator that handles inbred individuals (Jacquard

1972).

In this study, we evaluate the performance of multiple

pairwise relatedness estimators on a set of 33 key indi-

viduals from a dataset consisting of genotypes for several

related apple cultivars as well as simulated datasets

reflecting the properties of this dataset. The dataset is

available from the EU project HiDRAS. The pedigree of

this population is known and consistent with available

marker data. Therefore, the pedigree-based coancestry

coefficients are taken as the point of reference.

Materials and methods

Prologue

Two alleles are said to be identical by state (IBS) if they

share the same allelic type or value. In the case of a multi-

allelic locus, nine IBS modes are possible for a pair of

genotypes, see Tables 1 in either Milligan (2003) or

Anderson and Weir (2007). Two alleles are said to be

identical by descent (IBD) if they are identical copies of an

allele segregating from a common ancestor within the

defined pedigree. Compared to unrelated individuals,

individuals that are related are more likely to have similar

genotypes as they have an increased probability of sharing

alleles IBD from a recent common ancestor.

One commonly used parameter in relationship esti-

mation is Wright’s coancestry coefficient hXY, which

represents the probability that a randomly chosen allele

from individual X is IBD to an allele randomly chosen

from individual Y. For non-inbred individuals, Wright’s

relatedness coefficient equals twice the coancestry coef-

ficient, i.e., rXY = 2hXY. The inbreeding coefficient is the

probability that the two alleles at any locus in an indi-

vidual are IBD (Malécot 1948). Jacquard (1972)

described a set of nine identity states that gives a full

description of the IBD relationships between the set of

four alleles from a pair of possibly inbred individuals. In

the absence of inbreeding, the number of possible IBD

modes reduces to three (Thompson 1975). We will not

consider more elaborate parameterizations such as those

presented by Cockerham (1954), Kempthorne(1954), and

Harris (1964).
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Estimators

We used the same set of estimators for pairwise coancestry

coefficients that were used by Anderson and Weir (2007),

plus the Jacquard estimator. The estimators may be

grouped into a set of MOM estimators (based on matching

the sample moments with the corresponding distribution

moments) and a set of ML estimators (based on deter-

mining the parameters that maximize the probability of the

sample data).

Method of moments (MOM) estimators

SI The similarity index (SI), denoted Sxy (Li et al. 1993)

is here defined as the average fraction of alleles at a

locus in a reference individual X for which there is

another allele in the proband Y that is IBS (Lynch and

Ritland 1999). Let x and y be the genotypes of

individuals X and Y, respectively, and let a, b, c, and d

denote alternative alleles. The frequency of the allele i

is given as pi. The values that Sxy can take are equal to

1.0 (x = aa and y = aa, or x = ab and y = ab), 0.75

(x = aa and y = ab; or x = ab and y = aa), 0.5 (x = ab

and y = ac), and 0 (x = ab and y = cd) A single locus

estimator for hxy can be written as ĥxy ¼ 0:5r̂xy; with

r̂xy ¼ Sxy � S0

� ��
1� S0ð Þ; where S0 ¼

Pn
i¼1 p2

i

2� pið Þ is the expected value of S for unrelated

individuals in a random-mating population. The

multi-locus estimator is taken as the non-weighted

average across all loci, i.e., ĥXY ¼ 1=Lð Þ
P

L ĥxy;

where L is the number of loci.

QG This MOM estimator was primarily proposed for

estimating the average degree of relatedness within

groups of individuals (Queller and Goodnight 1989).

However, Lynch and Ritland (1999) expressed the

estimator in terms that can be used to estimate

pairwise relatedness for individuals X and Y. Let the

reference individual X with genotype x have alleles a

and b and the proband individual Y with genotype y

have alleles c and d. Then let Sab denote the indicator

variable for sharing of pairs of alleles, and this variable

equals 1 or 0 if the reference individual is homozygous

or heterozygous, respectively. Likewise for the

indicators Sac, Sad, Sbc, Sbd, and Scd, the estimator

for the coancestry coefficient is ĥxy ¼ 0:5� r̂xy;

with r̂xy ¼ 0:5 Sac þ Sad þ Sbc þ Sbdð Þ � pa � pbð Þ=
1þ Sab � pa � pbð Þ; i.e., half the relatedness

coefficient. Note that this estimator fails in case of

heterozygous individuals at diallelic loci since

Sab = 0 and r̂xy is not defined. Similarly, to the SI

estimator, the multi-locus estimator is calculated as

the non-weighted average across all loci.

LR Lynch and Ritland (1999) proposed the single locus

estimator as r̂xy ¼ pa Sbc þ Sbdð Þ þ pb Sac þ Sadð Þð
�4papbÞ= 1þ Sabð Þ pa þ pbð Þ � 4papbð Þ and used

wr;x ¼ 1þ Sabð Þ pa þ pbð Þ � 4papbð Þ= 2papbð Þ as a

locus-specific weight. Then, the multilocus

estimator is r̂XY ¼
P

L wr;xr̂xy

� ��P
L wr;x; where

wr;xr̂xy reduces to 0:5 Sbc þ Sbdð Þ=pb þ Sacþðð
SadÞ=pa � 4Þ: The estimator for the coancestry

coefficient is calculated as ĥXY ¼ 0:5� r̂XY :

W The estimator proposed by Wang (2002) has some

similarity to the LR estimator as it also starts with the

equation r = //2 + D where the weighted least-

squares estimators of / and D were obtained by

solving Eqs. 9 and 10 in Wang (2002). However, this

estimator was devised to handle better the uncertainty

in allele frequency estimates (Wang 2002). Again,

the estimator for coancestry coefficient becomes

ĥXY ¼ 0:5� r̂XY :

Note that both the QG and LR estimators are asymmetric

with respect to the two individuals, that is ĥxy 6¼ ĥyx; and

we use the average of the estimates taken from the different

orderings of the two individuals (Anderson and Weir

2007). Furthermore, not all MOM estimators restrict the

estimates of coancestry coefficients to be non-negative.

However, since we define a coancestry coefficient as IBD

probability, we can adjust negative estimates by setting

them equal to zero, and we denote the adjusted estimators

as QGa, SIa, LRa, and Wa, respectively.

Maximum likelihood (ML) estimators

The single locus likelihood of a relationship specified by D
may be given by L Dð Þ ¼ Pr IBSijDð Þ ¼

P
j Pr IBSijIBDj

� �
Dj;

where Pr IBSijIBDj

� �
is the probability of the ith IBS mode,

given the jth IBD mode. The probability that a pair of indi-

viduals will be in the jth IBD mode is denoted Dj. For the

Jacquard and Thompson estimators, these probabilities are

given in Table 7, p. 43 of Thompson (1986) and also in

Table 1 of both Milligan (2003) and Anderson and Weir

(2007). The probabilities for the Anderson-Weir estimator are

in Table 2 of Anderson and Weir (2007). Note that these two

tables are identical when the population structure parameter,

FST, equals zero. For unlinked marker loci, the multiple-loci

likelihood is the product of all single locus likelihoods.

Th This estimator assumes no inbreeding (Milligan

2003; Thompson 1975) with a parameter space

constrained by D1 = … = D6 = 0, reducing the

likelihood to a function of parameters k2 � D7ð Þ;
k1 � D8ð Þ; and k0 � D9ð Þ; with 0 B ki B 1 (i = 0, 1,

2) and k0 + k1 + k2 = 1. The coancestry coefficient

is estimated as ĥxy ¼ 0:5 k̂2

� �
þ 0:25 k̂1

� �
:
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AW This estimator assumes some degree of population

structure, that is specified by the population

structure parameter FST (Anderson and Weir

2007). We examined the following values for FST:

0.01, 0.03, 0.05 and 0.10, denoted as AW01, AW03,

AW05, and AW10, respectively. The same

constraint was put on the parameter space as for

Thompson’s estimator.

J The estimator with the nine Jacquard coefficients

(Hepler 2005). This is the only estimator that does

not assume non-inbred individuals. The Jacquard

estimator thus provides estimates for the inbreeding

coefficients of the individuals. Obeying laws of

probability, we apply the constraints 0 B Dj B 1

(j = 1, …, 9) and
P9

j¼1 Dj ¼ 1:0; where the

coancestry coefficient is estimated as ĥxy ¼ 1:0�
D̂1

� �
þ0:5� D̂3 þ D̂5 þ D̂7

� �
þ 0:25� D̂8

� �
:

We found that the simplex method (Press et al. 2002) to

obtain ML estimates, as used by Anderson and Weir

(2007), did not work well for the Jacquard estimator. We

developed an EM algorithm, originally proposed by

Dempster et al. (1977), to obtain ML estimators for the

model parameters (unpublished work, Hepler et al.). The

EM algorithm begins with a starting estimate of D1,…, D9.

Given these values, we use Bayes theorem to calculate the

probability that the pair is in each of states S1,…, S9 at

each marker. The values of D1,…, D9 are then updated by

calculating the expected number of markers at which the

pair is in states S1,…, S9 (given that we know the proba-

bility of the pair being in each state at each marker). In this

way, we iterate between updating D1,…, D9 and updating

the probability of the pair being in each IBD state at each

marker until convergence is reached. For all ML estima-

tors, we applied multiple starting configurations and we

used the value of 1.0e-4 as a convergence criterion.

HiDRAS data

The pairwise relatedness estimation was performed on a set

of 33 parents of multiple mapping populations that were

the resource for a large QTL mapping study for apples in

the EU project HiDRAS (Gianfranceschi and Soglio 2004)

(http://www.hidras.unimi.it/). As this project was still

ongoing and both marker and pedigree data may be added

or modified, we took the dataset available on 25 June 2007

(Table 1). The dataset contained 135 founder individuals,

i.e., individuals whose parents were unknown. The 135

founder individuals are taken as the founder population to

maximize the allele counts used to calculate allele fre-

quencies. Only 38 of these founders were true ancestors of

the 33 parents. The other founders were included in the

HiDRAS project to study allelic diversity and were helpful

in the estimation of allele frequencies in the founder pop-

ulation. Let ni denote the number of individuals, then the

number of pairwise coancestry coefficients is ni ni þ 1ð Þ=2

and equals 561 for the 33 parents.

The set of 33 parents and all their ancestors form the

core pedigree of 108 individuals (Table 1). This core

pedigree will be used in the simulation datasets (see later).

The pedigree records of the HiDRAS population were

available for up to six ancestral generations and pedigree

structure was complex as generations were overlapping and

more importantly, many marriage loops were present that

induced inbreeding (see Fig. 3 in Bink et al. (2007)). The

complexity of the pedigree structure caused considerable

variation in the pedigree-based coancestry coefficients

among the 33 parents (Fig. 1). The pedigree-based distri-

bution of coancestry coefficients was continuous instead of

a distinct clustering at 0 (not related), 0.0625 (e.g., second

cousins), 0.125 (half sibs), and 0.25 (e.g., full sibs or par-

ent-offspring). Close to 50 percent of the coancestry

coefficients were zero. In the set of 33 parents, 9 were

inbred with their inbreeding coefficients equal to 0.01,

0.02, 0.03, 0.05, 0.06 (39) and 0.19 (29). Note also that

several coancestry coefficients exceeded 0.5 (Fig. 1). In all

our figures, we will depict the coancestry coefficients for

pairs involving one or two inbred individuals by a different

color and symbol, i.e., red triangle-up versus black trian-

gle-down to visualize the possible influence of inbreeding.

The marker data comprised 86 SSR markers on 17

linkage groups, covering 11 Morgans with the number of

markers per linkage group ranging from 2 to 10 (Fig. 2)

(Patocchi et al. 2007). The average marker distance was

0.16 Morgan and we treat the markers as unlinked in this

study. The number of alleles per marker ranged from 2 to

19 in the full HiDRAS population. For most marker loci,

the fraction of typed individuals among the 135 founders

was close to 0.3 (Fig. 2).

Some of the estimators use an estimate of the population

structure parameter FST (Wright 1951) as presented in

equation 5.2 in Weir (1996), for different populations. This

Table 1 The pedigree composition of the HiDRAS apple data

HiDRAS Simulation

Parents Parents

Founders 135 1 38 1

Non-founders 250 32 70 32

Total 385 33 108 33

The core pedigree (n = 108) pertains to the set of 33 parents and their

ancestors and was used in the simulation datasets

Release date of this dataset was 25 June 2007

The 33 parents were crossed to produce the HiDRAS mapping

populations

846 Theor Appl Genet (2008) 117:843–855
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was achieved by considering the set of 33 parents and the

set of 138 founders as separate populations. Note that the

individuals in the set of parents are not unrelated which

hampers the estimation of the allele frequencies. To

account for multiple alleles, let v denote the number of

alleles at a particular locus; then we estimate FST for each

marker as F̂ST ¼
Pv

u¼1 s2
u

�Pv
u¼1 ~pu: 1� ~pu:ð Þ; where s2

u ¼
1

r�1ð Þ�n
Pr

i¼1 ni ~pu;i � ~pu:

� �2
with �n ¼

Pr
i¼1 ni=r; where r

equals 2 as we compare the set of founders with the set of

parents; ~pu;i and ~pu: refer to the frequency of allele u as

estimated from the ith population and to the average allele

frequency across populations, respectively. The estimates

for FST for all 86 loci were mostly below 0.03, however,

some loci had estimates greater than 0.05 (Fig. 2). The

higher FST values may be random noise (Lewontin and

Krakauer 1973) or the corresponding genomic regions may

have been under strong selection pressure as parents of the

QTL mapping populations are usually consciously chosen,

i.e., having a specific highly desired trait and/or frequently

used in breeding programs. The estimates for Nei’s genetic

distance (Nei 1972) were strongly correlated with the

estimates for FST (results not shown).

Marker allele frequencies

We consider three scenarios of marker allele frequencies,

two (D and E) pertaining to absence of knowledge about

population allelic frequencies and one (F) where we have

access to unrelated founder individuals from the population.

Dataset-derived (D) We estimate the allele frequencies

from the dataset itself, i.e., the 33 HiDRAS parents. We

note that the unrelatedness assumption is not met in this

scenario. The major pitfall here is that the frequency of a

rare allele shared by related individuals in the dataset is

overestimated, thus not being recognized as being rare.

Consequently, the coancestry coefficients for these pairs

are underestimated.

Equal (E) We assume a discrete uniform distribution,

i.e., for a particular marker locus each allele is equally

probable. That is, if n alleles were observed in the sampled

dataset (Fig. 2), all alleles occur at frequency equal to 1/n.

The major pitfall will be that alleles at high frequency are

not recognized as such and the coancestry coefficient of

pairs sharing these alleles will be overestimated.

Founder population (F) As pedigree records were

available and we had access to the original founders of a

pedigreed population, we estimated the allele frequencies

from the set of founders. Here, we had DNA for marker

genotyping available of a fraction (close to 0.3) of the 135

founder individuals (Fig. 2). Some alleles were not present

in the typed founders but were present in the set of 33

parents. To prevent estimates being equal to zero, we added

1 copy to every allelic class when estimating the allele

frequencies in the founder population.

We note that both the allele frequencies in scenarios D

and F are essentially estimated from the same HiDRAS

pedigreed population dataset. However, different sets of

individuals were used leading to different estimates of allele

frequencies, as is illustrated by the estimated FST values

(Fig. 2). Furthermore, it should be noted that we aim to

measure pairwise relatedness relative to the founder

Fig. 1 Cumulative distribution of pedigree-based pairwise coances-

try coefficients among the 33 HiDRAS parents (top panel), and the

relationship between pedigree-based coefficients and realized gen-

ome-wide IBD proportions among these individuals for the first

replicate of simulation (bottom panel)
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population, but all methods actually measure relatedness

with respect to some (possibly fictional) generation in

which the allele frequencies we are using first began to hold.

Influence of the number of marker loci

We also investigated the influence of the number of markers

on the performance of the various estimators by selecting

17, 34, and 50 marker loci. These numbers were obtained by

picking at every chromosome the first; the first and final;

and the first, final and most intermediate loci (except

chromosome 7 which only had 2 loci), respectively.

Simulated data

To study the performance of the various pairwise related-

ness estimators further, we simulated 10 replicated datasets

conforming to the pedigree relationships of the core of the

real data set (Table 1). Thus, we simulated 38 independent

founders and their descendants according to the known

pedigree structure. A gene-dropping method (Maccluer

et al. 1986) was used to simulate Mendelian inheritance of

marker alleles from parents to offspring while Haldane’s

mapping function (Haldane 1919), was used to transform

linkage distances into recombination fractions. The genetic

linkage map differed from the real data set as markers were

placed equidistantly along the genome. That is, using Hal-

dane’s mapping function we simulated 17 linkage groups

each with length equal to 0.8 Morgan and with markers

every 0.2 Morgan, resulting in 85 marker loci. For every

marker locus, four alleles were simulated with their fre-

quencies equal to 0.125, 0.125, 0.25, and 0.50, respectively.

These allele frequencies were taken to mimic the inequality

in frequencies observed in the real data. The marker geno-

types were simulated to be in gametic and Hardy Weinberg

equilibrium. We emphasize that in the simulation datasets

the pedigree-based coancestry coefficients truly reflect the

known pedigree, i.e., the founders are independent and

unrelated, which was unlikely to be true in the real data.

In the simulation, the transmission of founder genomic

segments was known with a resolution of 0.01 Morgan. In

other words, we traced the origin of genomic segments

back to the founder chromosomes at 0.01 Morgan-bins.

From this, we calculated the realized genome-wide
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Fig. 2 Number of alleles per marker locus in the HiDRAS population

(top panel), the fraction of typed individuals among 135 HiDRAS

founders (middle panel), and population structure (FST) between the

set of 135 founders and the set of 33 parents (lower panel). The

genetic linkage map holds 17 groups comprising 86 SSR markers and

a total genetic distance of approximately 11 Morgans
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pairwise IBD proportions for the set of 33 parents. The

relationship between the pedigree-based coefficients and

realized proportions was highly accurate (Fig. 1). For the

10 replicated datasets, the averaged correlation and RMSE

(see later) were close to 1.0 and below 0.01, respectively

(not shown). The variation in the meiosis process and finite

length of the genome caused sampling variation as shown

in Fig. 1. For example, the pedigree-based coancestry

coefficient 0.125 corresponds to a range in genome-based

proportions (0.09–0.15). In the simulated datasets, 76

(38 9 2) alleles were available to estimate the allele fre-

quencies in founder population.

Criteria for comparing performance of estimators

In this study, we choose to have the known pedigree of the

33 parents as the point of reference to assess the perfor-

mance of the marker-based estimators of coancestry

coefficients. We plot the pedigree-based versus the marker-

based estimates of coancestry coefficients and calculate the

Pearson correlation coefficients and the linear regression

lines. The pedigree-based estimates are taken as the pre-

dictor variable (plotted along the x-axis) and the marker-

based estimates are used as response variable (plotted

along the y-axis). The correlations and regression lines are

based on pairs of distinct individuals, i.e., excluding the

coancestry coefficients of each individual with itself. In the

visualization, we make a distinction between pairs that

include one or two inbred individuals (red triangle-up) and

pairs with no inbred individuals (black triangle-down).

Omitting the within-individual coancestry coefficients, the

number of pairwise coancestry coefficients is ni ni � 1ð Þ=2

and equals 528 for the 33 parents.

The root mean square error (RMSE) comprises both bias

and standard error and was here quantified as RMSE hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
�

nfi;jg
� �Pnfi;jg

k¼1 ĥk � ~hk

� �2
r

where nfi;jg is the number of

pairs of individuals, ĥk and ~hk are the estimated coancestry

coefficient for the kth pair from a marker-based and a

pedigree-based estimator, respectively. We calculated the

RMSE across all pairs of individuals and across all pairs of

unrelated individuals (~hk= 0), respectively (Table 2).

Results

HiDRAS results

Data derived (D) The scenario of estimating the allele

frequencies from the dataset itself resulted in considerable

variation in estimated correlations (Figs. 3, 4). The highest

correlation was obtained for the Wang estimator after

adjustment of negative estimates. In this scenario, all

MOM estimators had a major proportion of negative esti-

mates for coancestry coefficients. The adjustment of

negative values resulted in very different regression lines

and, except for the LR estimator, it resulted always in

higher correlations compared to the unadjusted estimates

(Fig. 3, 4). The adjustment of negative values also

improved the RMSE values (Table 2) of the MOM esti-

mators. The LR estimator performed relatively poorly and

the adjustment of negative estimates resulted in a even

lower correlation and a too steep slope of the regression

line (Fig. 3). The correlations of the ML estimators were in

general lower, especially for high values of FST in the AW

estimator (Fig. 4). Apparently, these higher values for FST

caused a (too) strong regression of the estimated coancestry

coefficients towards zero. This is also seen in the estimated

RMSE as the RMSE across all pairs increases when FST

increases. However, the RMSE of the ML estimators were

lower than those of the unadjusted MOM estimators

(Table 2).

Equal (E) This scenario resulted in a general over-esti-

mation of the pairwise coancestry coefficients (Fig. 3).

That is, the estimated regression lines were all biased to

higher values. The magnitude of the bias was largest for the

Jacquard estimator and smallest for the Wang estimator.

All the correlation estimates were very similar, ranging

from 0.79 to 0.81 (Fig. 4). In this scenario, there were no

negative estimates for coancestry coefficients so the

adjusted estimators might have been omitted here. The

severe bias is also reflected in the estimated RMSE

(Table 2), where the effect of the population parameter FST

is also clearly visible. The AW10 had the lowest estimate

as the higher FST values cause a stronger regression of the

coancestry coefficient towards zero and thereby counter-

acting the effect of assuming equal allele frequencies. The

high RMSE for the Jacquard estimator may be due to the

less accurate estimation of the large number of parameters

of this estimator.

Founder population (F) The use of founder allele fre-

quencies resulted, on average, in the highest estimated

correlations (Fig. 3, 4) with the highest value (0.89) for the

AW03 estimator. This AW03 estimator gave very low

estimates for RMSE as well (Table 2). However, higher

values for FST resulted in an undesired regression towards

zero of the estimated coancestry coefficients, which

resulted in an increased RMSE for all pairs. The MOM

estimators gave negative estimates and the adjustment of

these negative values resulted in higher correlation and

lower RMSE estimates. However, these were never better

than the ML estimators (except AW10). The LR estimator

had comparable high correlations and low RMSE

estimates.
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Influence of the number of marker loci We also inves-

tigated the influence of the number of markers on the

performance of the various estimators (Fig. 5) by selecting

17, 34, and 50 marker loci. The increase in correlation was

the largest when doubling the number of loci from 17 to 34

for all estimators. Correlations up to 0.80 were obtained

when two markers per chromosome and appropriate allele

frequencies were available. Several differences between

the performance of MOM estimators (excluding the LR

estimator) and the LR and ML estimators were observable.

In the scenario of data derived frequencies, the MOM

estimators show an additional increase in correlation when

going from 50 to 86 which was not observed for the other

estimators.

Simulation results

The estimated correlations and RMSE, mean and standard

deviations across ten replicates, for the simulation datasets

showed almost identical patterns to those observed in the

HiDRAS dataset (Fig. 4; Table 2). This may indicate that

the relatedness through unknown common ancestors of the

founders did not add substantially to the ancestral relat-

edness in the known part of the pedigree.

Equal (E) In case of the equal allele frequencies the

estimated correlations were somewhat higher than those for

the HiDRAS dataset, however, the uniformity in results

across estimators is remarkable. The AW10 estimator

appeared to be superior to the other estimators, which may

be the result of by allowing deviations in allele frequencies

via the population structure parameter.

Data derived (D) The variation in mean estimates of

correlations was highest for the scenario of estimating the

allele frequencies from the dataset itself. The MOM esti-

mators, except the LR estimator, resulted in the highest

correlations, especially after correction for the negative

values for estimated coancestry coefficients. The influence

of increasing the value of the population structure param-

eter FST was clearly visible in this scenario as higher values

for FST resulted in much lower correlations and higher the

RMSE estimates (Table 2). The AW estimators performed

relatively poorly as the regression towards zero caused

lower correlation and higher RMSE estimates among pairs

with non-zero coancestry coefficients.

Founder population (F) The simulation results sup-

ported the results on the HiDRAS data fully. The ML

estimators performed very well as long as the value for

FST was not too large, i.e., up to 0.05. The LR estimator

Table 2 Root mean square error (RMSE) of pairwise relatedness estimates (hk)
2 from MOM and ML estimators to HiDRAS and simulation data

Data derived (D) Equal (E) Founder population (F)

HiDRAS Simulation HiDRAS Simulation HiDRAS Simulation

hk hk = 0 hk hk = 0 hk hk = 0 hk hk = 0 hk hk = 0 hk hk = 0

SI 6 7 7 7 12 13 9 10 7 7 4 4

QG 8 8 7 7 13 14 11 11 6 6 4 4

LR 7 4 7 5 13 13 11 12 3 3 4 3

W 6 6 6 6 12 13 10 11 6 6 4 4

SIa 4 2 3 1 12 13 9 10 7 7 3 3

QGa 4 1 4 1 13 14 11 11 5 6 3 3

LRa 6 1 5 1 13 13 11 12 3 3 3 2

Wa 3 1 3 1 12 13 10 11 6 6 3 3

Th 5 1 5 1 11 12 9 11 4 3 3 2

AW01 5 1 5 1 11 12 9 10 3 3 3 1

AW03 5 0 5 1 1 0 8 9 3 2 3 1

AW05 6 0 6 0 9 9 7 7 3 1 4 1

AW10 6 0 6 0 6 6 4 4 4 1 5 0

J 5 1 5 1 15 16 14 14 4 4 3 2

Marker allele frequencies were estimated from the data (n = 33), taken equal, or estimated from the founder population. For the simulation, the

averages of 10 replicates are presented

Values have been multiplied by 100 to improve readability of Table

hk is relatedness of pair k; hk = 0 pertains to those pairs that involve two individuals not related by pedigree

Method of Moments estimators: SI similarity index, QG Queller-Goodknight, LR Lynch-Ritland; and W Wang. QGa, SIa, LRa, and Wa refer to

the estimates adjusted for negative values (set equal to zero)

Maximum Likelihood estimators: Th Thompson, AW Anderson-Weir and J Jacquard. The substrings 01, 03, 05, and 10 refer to FST = 0.01, 0.03,

0.05, and 0.10, respectively
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performed as well as the ML estimators and the other

MOM estimators were relatively close after adjustment of

negative estimates, both with respect to correlation and

RMSE.

Discussion

We have compared several marker-based estimators of

pairwise coancestry coefficients by analyzing real and

simulated datasets. The pedigree-based coancestry coeffi-

cients were taken as the standard for comparison. The

results of the analysis of the real data were strongly sup-

ported by those from the simulated datasets. The

availability of (founder) population allele frequencies

resulted in high correlations, in the simulated data as high

as 0.90 in the simulated data. The performance of ML

estimators and MOM estimators, especially the LR esti-

mator, were basically the same in the real and simulated

data. However, when allele frequency information is absent

the use of estimates from the sampled dataset itself or

naively taking equal allele frequencies resulted in lower

correlations and higher RMSE values. Furthermore, the

MOM estimators, with the exception of the LR estimator,

performed relatively better as they seemed to be more

robust to having incorrect specification of allele frequen-

cies. This might especially pertain to the Wang estimator

(Fig. 4) which is claimed to be robust for having unknown

relatives being included in samples for estimating allele

frequencies (Wang 2002). Without adjustment for negative

estimates, the MOM estimators always gave higher RMSE

values than the ML estimators, but this trend was reversed

when this adjustment was made.

Influence of the number of marker loci

Several differences between the performance of MOM

estimators (excluding the LR estimator) and the LR and ML

estimators were observable. In the scenario of data derived

frequencies, the MOM estimators show an additional

increase in correlation when going from 50 to 86 loci, which

was not observed for the other estimators. The correlations

of the MOM estimators (except LR) only varied by a small

amount across the different allele frequency scenarios. For

Fig. 3 Correlation (r) among

estimates for pairwise

coancestry coefficients among

33 HiDRAS individuals from

the W, Wa, and J estimators,

taking data derived (D); equal

(E); or founder population (F)

allele frequencies. The

coefficients involving at least

one inbred individual is

indicated by red triangles (black
otherwise). The dotted lines
indicate coefficients equal to 0.0

(red) 0.0625, 0.125 and 0.25

(green). The estimated and

unity regression is indicated by

the blue solid and dashed lines,

respectively
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the other estimators, the correlations were highest across all

numbers of marker loci in the scenario of founder allele

frequencies. Adding more markers to the current dataset

may only marginally increase the correlations. Figure 5 also

shows that the SIa, QGa, and Wa estimators were insensi-

tive to allele frequencies as correlation estimates were

highly similar. The influence of the number of markers on

the RMSE estimates was small, i.e., the RMSE only

decreased mildly when increasing the number of marker

loci. The RMSE estimates in the equal frequencies scenario

were always distinctively highest for all estimators. The

ranking in performance of the various estimators was not

affected by the number of loci, which was consistent to the

results of Oliehoek et al. (2006).

Influence of linked loci

All estimators in this study were based on the assumption

of unlinked markers. The removal of 12 relatively closely

linked markers from the set of 86 loci (distance less than

0.09 Morgan) resulted into estimated coancestry coeffi-

cients that were highly similar to those obtained from the

full set of markers (results not shown). In addition, the

increasing availability of (SNP) markers will increase

marker density and linkage between markers will affect the

variance of the estimators, although it will not change the

expected values. Methods that consider linkage tend to

have long running times as the dimensionality of IBD

parameters increases (McPeek and Sun 2000; Sieberts et al.

2002) and a Baum algorithm (Baum et al. 1970) is needed

to compute the likelihood for a given IBD configuration.

This type of approach was not explored in this study.

Influence of inbreeding

The dataset contained several inbred individuals (see

‘‘Materials and methods’’) and most estimators have been

devised for outbred populations. However, the results did

not point to a dramatic influence of inbreeding in the per-

formance of the various estimators. In all figures, we used

different colors for estimates between pairs that contained

one or two inbred individuals versus pairs without inbred

individuals (Fig. 3) and no clustering could be observed.

The estimates of correlation and RMSE for these two

groups were also similar (results not shown). Furthermore,

the Jacquard estimator did not perform better than the

Thompson estimator even though the first allows for

inbreeding and the second does not. This lack of improve-

ment might have two explanations; either the inbreeding

levels were too low to influence the Thompson estimator

(only 2 out of 9 non-zero coefficients larger than 0.06, see

‘‘Materials and methods’’), or the accuracy of the Jacquard

estimator is decreased because it uses more parameters.

Influence of population structure parameter

The allele frequencies in the sampled set of 33 parents were

different from those in the founder population, as seen from

the estimates of FST (Fig. 2). Our expectation was that

accommodating deviations in allele frequencies into the

estimator might improve the estimates of coancestry

coefficients. The AW estimators with small values for FST

(0.01, 0.03) performed as well as the original Thompson

estimator whereas the estimators with higher values for FST

(0.05, and 0.10) seemed to suffer from allowing deviations

in the allele frequencies for the data derived allele fre-

quencies. In retrospect, this should not have been surprising

as the AW estimator was designed to accommodate situa-

tions where allele frequencies are available from a more

distantly related population, not the sampled population

itself. This also explains why this estimator, with higher

values, performed well in the scenario of equal allele fre-

quencies, i.e., these frequencies deviated from both those in
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Fig. 4 Correlation of pairwise relatedness estimates from MOM1 and

ML2 estimators to HiDRAS (top panel) and simulation data (bottom
panel). Marker allele frequencies were taken estimated from the data

(n = 33) (D), equal (E), or estimated from the founder population

(F). The y-error bars represent the standard deviations for 10

simulated datasets
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the founder population and those in the sampled popula-

tion. In addition, when knowledge about recent population

history and population substructures is available, other

approaches may be considered (Gasbarra et al. 2007;

Meuwissen and Goddard 2001).

Subsequent analysis

When pedigree records are inaccurate or missing, the

estimation of coancestry coefficients might be a first step in

estimation of genetic parameters of quantitative traits.

Thomas (2005) reviewed different approaches to relation-

ship estimation with particular attention on optimizing the

use of this relationship information in subsequent

heritability estimation. A real data example in Soay sheep

(Thomas et al. 2002) using a set of 12 markers, did not

result in reliable heritability estimates probably because of

the low average relatedness in the population (Thomas

et al. 2002). Our results indicate that 12 markers do not

suffice to obtain accurate relationship estimates. The reli-

ability of heritability estimates is expected to increase

when higher numbers of markers are available and we plan

to verify this in a separate study.

Practical guidelines

The results of this study did not identify one estimator for

pairwise coancestry coefficients that outperformed other
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estimators. However, the allele frequencies used were

critical. Taking equal allele frequencies generally leads to

an overestimation of relatedness. This may be neutralized

by taking a somewhat too high a value for FST in the AW

estimator. Using dataset-derived allelic frequencies leads to

underestimation, especially for the ML and LR estimators,

as rare alleles shared by relatives are not recognized as

such. We are currently investigating the possibility to

estimate allele frequency and relatedness jointly. Never-

theless, access to reliable allele frequencies seems most

beneficial since highest correlation and lowest RMSE

estimates were obtained. In that scenario, the performances

of the various estimators were not so different but seem to

favor the ML estimators. In this study, a set of 34 poly-

morphic loci seemed to be a good balance between

performance of estimators and marker genotyping costs as

the increase in performance became marginal for higher

number of loci. This optimal number will likely depend on

the research question, the desired accuracy, and the number

of chromosomes and total length of the genome.
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Blaringhem. Masson, Paris

McPeek MS, Sun L (2000) Statistical tests for detection of

misspecified relationships by use of genome-screen data. Am J

Hum Genet 66:1076–1094

Meuwissen TH, Goddard ME (2001) Prediction of identity by descent

probabilities from marker-haplotypes. Genet Sel Evol 33:605–

634

Milligan BG (2003) Maximum-likelihood estimation of relatedness.

Genetics 163:1153–1167

Nei M (1972) Genetic distance between populations. Am Nat

106:283–292

Oliehoek PA, Windig JJ, van Arendonk JAM, Bijma P (2006)

Estimating relatedness between individuals in general popula-

tions with a focus on their use in conservation programs.

Genetics 173:483–496

Patocchi A, Fernández-Fernández F, Evans K, Silfverberg-Dilworth

E, Matasci CL, Gobbin D, Rezzonico F, Boudichevskaia A,

Dunemann F, Stankiewicz-Kosyl M, Mathis F, Durel CE, Soglio

V, Gianfranceschi L, Costa F, Toller C, Cova V, Mott D,

Komjanc M, Barbaro E, Voorrips RE, Rikkerink E, Yamamoto

854 Theor Appl Genet (2008) 117:843–855

123

http://dx.doi.org/10.1007/s10681-10007-19516-10681
http://dx.doi.org/10.1007/s10681-10007-19516-10681


T, Cevik V, Gessler C, van de Weg WE (2007) Development of

a set of apple SSRs markers spanning the apple genome,

genotyping of HiDRAS plant material and validation of geno-

typic data. Acta Horticulturae

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002)

Numerical recipes in C++. The art of scientific computing, 2nd

edn. Cambridge University Press, Cambridge

Queller DC, Goodnight KF (1989) Estimating relatedness using

genetic-markers. Evolution 43:258–275

Ritland K (1996a) Estimators for pairwise relatedness and individual

inbreeding coefficients. Genet Res 67:175–185

Ritland K (1996b) Marker-based method for inferences about

quantitative inheritance in natural populations. Evolution

50:1062–1073

Sieberts SK, Wijsman EM, Thompson EA (2002) Relationship

inference from trios of individuals, in the presence of typing

error. Am J Hum Genet 70:170–180

Thomas SC (2005) The estimation of genetic relationships using

molecular markers and their efficiency in estimating heritability

in natural populations. Philosophical Transactions of the Royal

Society B-Biological Sciences 360:1457–1467

Thomas SC, Coltman DW, Pemberton JM (2002) The use of marker-

based relationship information to estimate the heritability of

body weight in a natural population: a cautionary tale. J Evol

Biol 15:92–99

Thomas SC, Hill WG (2000) Estimating quantitative genetic param-

eters using sibships reconstructed from marker data. Genetics

155:1961–1972

Thompson EA (1975) Estimation of pairwise relationships. Ann Hum

Genet 39:173–188

Thompson EA (1986) Pedigree analysis in human genetics. Johns

Hopkins University Press, Baltimore

Wang JL (2002) An estimator for pairwise relatedness using

molecular markers. Genetics 160:1203–1215

Weir BS (1996) Genetic data analysis II: methods for discrete

population genetic data/Bruce S. Weir. Sinauer Associates,

Sunderland, Mass

Weir BS, Anderson AD, Hepler AB (2006) Genetic relatedness

analysis: modern data and new challenges. Nature Reviews

Genetics 7:771–780

Wright S (1922) Coefficients of inbreeding and relationship. Am Nat

56:330–338

Wright S (1951) The genetical structure of populations. Annals of

Eugenics 15:323–354

Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF,

McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S,

Buckler ES (2006) A unified mixed-model method for associ-

ation mapping that accounts for multiple levels of relatedness.

Nat Genet 38:203–208

Theor Appl Genet (2008) 117:843–855 855

123


	Comparison of marker-based pairwise relatedness estimators�on a pedigreed plant population
	Abstract
	Introduction
	Materials and methods
	Prologue
	Estimators
	Method of moments (MOM) estimators
	Maximum likelihood (ML) estimators
	HiDRAS data
	Marker allele frequencies
	Influence of the number of marker loci
	Simulated data
	Criteria for comparing performance of estimators

	Results
	HiDRAS results
	Simulation results

	Discussion
	Influence of the number of marker loci
	Influence of linked loci
	Influence of inbreeding
	Influence of population structure parameter
	Subsequent analysis
	Practical guidelines

	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


